书目详情:
Contents1. Our Steps on the Bickel Way1.1 Introduction1.2 Doing Well at a Point and Beyond1.3 Robustness Transformations Oracle-free Inference and Stable Parameters1.4 Distribution Free Tests Higher Order Expansions and Challenging Projects1.5 From Adaptive Estimation to Semiparametric Models1.6 Hidden Markov Models1.7 Non- and Semi-parametric Testing1.8 The Road to Real LifeReferencesBickels PublicationPart I. Semiparametric Modeling2. Semiparametric Models: A Review of Progress since BKRW 1993)2.1 Introduction2.2 Missing Data Models2.3 Testing and Profile Likelihood Theory2.4 Semiparametric Mixture Model Theory2.5 Rates of Convergence via Empirical Process Methods2.6 Bayes Methods and Theory2.7 Model Selection Methods2.8 Empirical Likelihood2.9 Transformation and Frailty Models2.10 Semiparametric Regression Models2.11 Extensions to Non-i.i.d. Data2.12 Critiques and Possible Alternative TheoriesReferences3. Efficient Estimator for Time Series3.1 Introduction3.2 Characterization of Efficient Estimators3.3 Autoregression Parameter3.4 Innovation Distribution3.5 Innovation Density3.6 Conditional Expectation3.7 Stationary Distribution3.8 Stationary Density3.9 Transition DensityReferences4. On the Efficiency of Estimation for a Single-index Model4.1 Introduction4.2 Estimation via Outer Product of Gradients4.3 Global Minimization Estimation Methods4.4 Sliced Inverse Regression Method4.5 Asymptotic Distributions4.6 Comparisons in Some Special Cases4.7 Proofs of the TheoremsReferences5. Estimating Function Based Cross-Validation5.1 Introduction5.2 Estimating Function Based Cross-Validation5.3 Some Examples5.4 General Finite Sample Result5.5 AppendixReferencesPart II. Nonparametric Methods6. Powerful Choices: Tuning Parameter Selection Based on Power6.1 Introduction: Local Testing and Asymptotic Power6.2 Maximizing Asymptotic Power6.3 Examples6.4 AppendixReferences7. Nonparametric Assessment of Atypicality7.1 Introduction7.2 Estimating Atypicality7.3 Theoretical Properties7.4 Numerical Properties7.5 Outline of Proof of Theorem 7.1References8. Selective Review on Wavelets in Statistics8.1 Introduction8.2 Wavelets8.3 Nonparametric Regression8.4 Inverse Problems8.5 Change-points8.6 Local Self-similarity and Non-stationary Stochastic Process8.7 Beyond WaveletsReferences9. Model Diagnostics via Martingale Transforms: A Brief Review9.1 Introduction9.2 Lack-of-fit Tests9.3 Censoring9.4 Khamaladze Transform or BootstrapReferencesPart III. Statistical Learning and Bootstrap10. Boosting Algorithms: with an Application to Bootstrapping Multivariate Time Series10.1 Introduction10.2 Boosting and Functional Gradient Descent10.3 L2-Boosting for High-dimensional Multivariate Regression10.4 L2-Boosting for Multivariate Linear Time SeriesReferences11. Bootstrap Methods: A Review11.1 Introduction11.2 Bootstrap for i.i.d Data11.3 Model Based Bootstrap11.4 Block Bootstrap11.5 Sieve Bootstrap11.6 Transformation Based Bootstrap11.7 Bootstrap for Markov Processes11.8 Bootstrap under Long Range Dependence11.9 Bootstrap for Spatial DataReferences12. An Expansion for a Discrete Non-Lattice Distribution12.1 Introduction12.2 Proof of Theorem 12.112.3 Evaluation of the Oscillatory TermReferencesPart IV. Longitudinal Data Analysis13. An Overview on Nonparametric and Semiparametric Techniques for Longitudinal Data13.1 Introduction13.2 Nonparametric Model with a Single Covariate13.3 Partially Linear Models13.4 Varying-Coefficient Models13.5 An Illustration13.6 Generalizations13.7 Estimation of Covariance MatrixReferences14. Regressing Longitudinal Response Trajectories on a Covariate14.1 Introduction and Review14.2 The Functional Approach to Longitudinal Responses14.3 Predicting Longitudinal Trajectories from a Covariate14.4 IllustrationsReferencesPart V. Statistics in Science and Technology15. Statistical Physics and Statistical Computing: A Critical Link15.1 MCMC Revolution and Cross-Fertilization15.2 The Ising Model15.3 The Swendsen-Wang Algorithm and Criticality15.4 Instantaneous Hellinger Distance and Heat Capacity15.5 A Brief Overview of Perfect Sampling15.6 Hubers Bounding Chain Algorithm15.7 Approximating Criticality via Coupling Time15.8 A SpeculationReferences16. Network Tomography: A Review and Recent Developments16.1 Introduction16.2 Passive Tomography16.3 Active Tomography16.4 An Application16.5 Concluding RemarksReferencesPart VI. Financial Econometrics17. Likelihood Inference for Diffusions: A Survey17.1 Introduction17.2 The Univariate Case17.3 Multivariate Likelihood Expansions17.4 Connection to Saddlepoint Approximations17.5 An Example with Nonlinear Drift and Diffusion Specifications17.6 An Example with Stochastic Volatility17.7 Inference When the State is Partially Observed17.8 Application to Specification Testing17.9 Derivative Pricing Applications17.10 Likelihood Inference for Diffusions under NonstationarityReferences18. Nonparametric Estimation of Production Efficiency18.1 The Frontier Model18.2 Envelope Estimators18.3 Order-m Estimators18.4 Conditional Frontier Models18.5 OutlookReferencesPart VII. Parametric Techniques and Inferences19. Convergence and Consistency of Newtons Algorithm for Estimating Mixing Distribution19.1 Introduction19.2 Newtons Estimate of Mixing Distributions19.3 Review of Newtons Result on Convergence19.4 Convergence Results19.5 Other Results19.6 SimulationReferences20. Mixed Models: An Overview20.1 Introduction20.2 Linear Mixed Models20.3 Generalized Linear Mixed Models20.4 Nonlinear Mixed Effects ModelsReferences21. Robust Location and Scatter Estimators in Multivariate Analysis21.1 Introduction21.2 Robustness Criteria21.3 Robust Multivariate Location and Scatter Estimators21.4 Applications21.5 Conclusions and Future WorksReferences22. Estimation of the Loss of an Estimate22.1 Introduction22.2 Kullback-Leibler Loss and Exponential Families22.3 Mean Square Error Loss22.4 Location Families22.5 Approximate Solutions22.6 Convergence of the Loss EstimateReferencesSubject IndexAuthor Index
评论:

